MATH4210: Financial Mathematics Tutorial 2

Xiangying Pang

The Chinese University of Hong Kong
xypang@math.cuhk.edu.hk

23 January, 2024

Exercise

Let $\left(Y_{j}\right)_{j \in \mathbb{N}}$ be a sequence of i.i.d. random variables. For any $j \in \mathbb{N}, \mathbb{P}\left(Y_{j}= \pm 1\right)=\frac{1}{2}$. Define for $n \in \mathbb{N}, X_{n}=\sum_{j=1}^{n} Y_{j}$.
Show that $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a martingale.
Definition for discrete-time martingale:
Let \mathcal{F}_{n} be a filtration, that is, an increasing sequence of σ-fields. A sequence X_{n} is said to be adapted to \mathcal{F}_{n} if $X_{n} \in \mathcal{F}_{n}$. If X_{n} is sequence with (1) $\mathbb{E}\left|X_{n}\right|<\infty$, (2) X_{n} is adapted to \mathcal{F}_{n}, (3) $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}$ for all n. then $\left(X_{i}\right)$ is said to be a martingale with respect to $\overline{\mathcal{F}}_{n}$. Solution:

1. Fix $n \in \mathbb{N}$.

$$
\begin{aligned}
& V \\
& X_{n} \text { is } F_{n} \text {-meonsurable }
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left(\left|X_{n}\right|\right) & =\mathbb{E}\left(\left|\sum_{j=1}^{n} Y_{j}\right|\right) \\
& \leq \sum_{j=1}^{n} \mathbb{E}\left(\left|Y_{j}\right|\right) \\
& =n\left(1 * \frac{1}{2}+|-1| * \frac{1}{2}\right)=n<\infty
\end{aligned}
$$

$\left(x_{n}\right) \xrightarrow{\operatorname{def}} \underset{\sim}{\sigma_{n}}$
2. Fix $n \in \mathbb{N}$, denote $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right) \rightarrow X_{n} \in \mathcal{F}_{n}$ (2)

$$
\begin{aligned}
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right) & =\mathbb{E}\left(X_{n}+Y_{n+1} \mid \mathcal{F}_{n}\right) \\
\text { linear } & \mathbb{E}\left(X_{n} \mid \mathcal{F}_{n}\right)+\mathbb{E}\left(Y_{n+1} \mathcal{F}_{n}\right) \\
& =X_{n}+\underbrace{\mathbb{E}\left(Y_{n+1}\right)}_{n} \\
& =X_{n}
\end{aligned}
$$

By 1 and $2,\left(X_{n}\right)_{n \in \mathbb{N}}$ is a martingale.

Remark

It still works when $\mathbb{P}\left(Y_{j}=2\right)=\frac{1}{3}$ and $\mathbb{P}\left(Y_{j}=-1\right)=\frac{2}{3}$. More generally, if $\mathbb{E}\left(Y_{j}\right)=0,\left(X_{n}\right)_{n \in \mathbb{N}}$ will still be a martingale (Exercise!).

Binomial Tree Models

Consider the following problem.
Suppose we target on a stock whose price is $S_{t}, t=0,1$. t represents the time. Now we are at time $t=0$, and we can observe the stock price S_{0}. At time $t=1$, it has two possibilities of moving to either $S_{1}=S_{0} u$ or $S_{1}=S_{0} d$ for some $u>1$ and $0<d<1$ with probability p and $1-p$ respectively. Suppose we have an option whose underlying asset is the stock maturing at $t=1$. If the stock price becomes $S_{0} u\left(S_{0} d\right)$, the value of the option is $f_{u}\left(f_{d}\right)$. How can we find the option price f at time $t=0$?

Binomial tree Models

$$
f_{u}-f_{d} d
$$

$$
G\left(S_{t_{1}}\right)=\left(S_{t_{1}-k}\right)^{+}<\left(S_{0} u-k\right)^{+} \Rightarrow\left(x_{0}, b\right)
$$

$$
q=1+b s t-d
$$

Proposition (Proportion 1.1 in Slide 3)
Let $G\left(S_{t_{0}}, S_{t_{1}}, \cdots, S_{t_{n}}\right)$ be the payoff of a derivative option at maturity t_{n}. Assume that there is some (x, ϕ) such that
$G\left(S_{t_{0}}, S_{t_{1}}, \cdots, S_{t_{n}}\right)=V_{t_{n}}^{x, \phi}$, ass. then the price of the option should be x.
${ }^{4}\left(x_{p} p\right)$

Remark

If the option is not well priced, there will be arbitrage opportunities for option buyers or sellers.

Binomial Tree Models

If $q \in(0,1)$, it defines a probability measure \mathbb{Q} (totally unrelated to p) that,

$$
\left\{\begin{array}{l}
\mathbb{P} \\
\underset{\mathbb{Q}}{ }\left[S_{t_{1}}=S_{0} u\right]=\mathbb{Q}\left[f_{t_{1}}=f_{u}\right]=q \\
\mathbb{Q}\left[S_{t_{1}}=S_{0} d\right]=\mathbb{Q}\left[f_{t_{1}}=f_{d}\right]=1-q .
\end{array}\right.
$$

Then, we have

$$
f=(1+r \Delta t)^{-1} \underbrace{\mathbb{Q}}\left[f_{\left.t_{t_{1}}\right]}:=\sum_{f_{i}} f_{i} \times \mathbb{Q}\left[f_{t_{1}}=f_{i}\right]\right.
$$

Note that we do Not necessarily have

$$
p:=\mathbb{P}\left(S_{t_{1}}=S_{0} u\right)=q
$$

If this is the case, we call it in the risk neutral world.

Binomial Tree Models

$(1+r t) \$$

Remark

- we call r is a discrete compound rate if we only compound the interest on each time periods. For example, starting at $t=0$, we compound the interest at $t=\Delta t, 2 \Delta t, \ldots$ and the interest values $(1+r \Delta t)^{1},(1+r \Delta t)^{2}, \ldots$
- we call r a continuous compound rate if we continuously compound the interest on all $t \geq 0$. At any $t \geq 0$, the interest values $e^{r t}$.

$(1+r t)^{k} \rightarrow e^{r t \cdot k}$
discrete $e_{\text {contimuons }}^{r(2)}$

$$
\begin{aligned}
& \infty=\lim _{n \rightarrow \infty}\left(1+\frac{r t}{n}\right)^{n} \\
&=\lim _{n \rightarrow \infty}\left(1+\frac{1}{\frac{n}{r t}}\right)^{n t} \cdot r t \\
&=\lim _{1 m^{n}}\left(1+\frac{1}{y}\right)^{y \cdot r t}=e^{r t} \\
& y=\frac{n}{r t} \rightarrow \infty
\end{aligned}
$$

Binomial Tree Models
(a)

$$
\begin{aligned}
& \text { (a) } \begin{array}{l}
S_{0} u=20 \times 1.2=24 ; f_{u}=\left(S_{0} u-20\right)^{+}=4 \quad x=(1+r-\Delta t)^{-1}\left[q f_{u}+(1-q) f_{d} d\right]=295 \\
S_{0}=20 \quad S_{0} d=20 \times 0.67=13.4 ; f_{d}=\left(S_{0} d-20\right)^{+}=0 \quad q=\frac{1+r \Delta t-d}{u-d}=\frac{1.1-0.67}{1.2-0.67}=0.81
\end{array}
\end{aligned}
$$

Question
Given the current price of the underlying stock, $S_{0}=20$. The stock price goes up and down by $u=1.2$ and $d=0.67$,respectively. The one period risk-free interest rate is 10%.
a) Price a one period European call option with exercise price $K=20$.

Consider the discrete compound case.
b) Price a one period European call option with exercise price $K=20$.

Consider the continuous compound case.
(b)

$$
\begin{aligned}
& x=e^{-r \Delta t}\left[q f_{u}+(1-q) f_{d}\right]=e^{-0.1}\left[q f_{u}+(1-q) f_{d}\right]=2.97 \\
& \left.q=\frac{e^{r \Delta t}-d}{u-d}=\frac{e^{0.1}-0.67}{1.2-0.67}=0.82 \quad e^{x} \rightarrow 1+x+o x^{2}\right) \\
& (1+r \Delta t)^{k} \rightarrow e^{r \Delta t \cdot k}
\end{aligned}
$$

