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Exercise
Let (Yj)j∈N be a sequence of i.i.d. random variables. For any
j ∈ N,P(Yj = ±1) = 1

2 . Define for n ∈ N,Xn =
∑n

j=1 Yj.
Show that (Xn)n∈N is a martingale.

Definition for discrete-time martingale:
Let Fn be a filtration, that is, an increasing sequence of σ−fields. A
sequence Xn is said to be adapted to Fn if Xn ∈ Fn. If Xn is sequence with
(1) E|Xn| < ∞, (2) Xn is adapted to Fn, (3) E(Xn+1|Fn) = Xn for all n .
then X is said to be a martingale with respect to Fn.
Solution:
1. Fix n ∈ N.

E(|Xn|) = E(|
n∑

j=1
Yj|)

≤
n∑

j=1
E(|Yj|)

= n(1 ∗ 1
2 + |− 1| ∗ 1

2 ) = n < ∞
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2. Fix n ∈ N, denote Fn = σ(X0, ...,Xn).

E(Xn+1|Fn) = E(Xn + Yn+1|Fn)

= E(Xn|Fn) + E(Yn+1|Fn)

= Xn + E(Yn+1)

= Xn

By 1 and 2, (Xn)n∈N is a martingale.

Remark
It still works when P(Yj = 2) = 1

3 and P(Yj = −1) = 2
3 . More generally, if

E(Yj) = 0, (Xn)n∈N will still be a martingale (Exercise!).
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Binomial Tree Models
Consider the following problem.
Suppose we target on a stock whose price is St, t = 0, 1. t represents the
time. Now we are at time t = 0, and we can observe the stock price S0.
At time t = 1, it has two possibilities of moving to either S1 = S0u or
S1 = S0d for some u > 1 and 0 < d < 1 with probability p and 1 − p
respectively. Suppose we have an option whose underlying asset is the
stock maturing at t = 1. If the stock price bacomes S0u(S0d), the value of
the option is fu(fd). How can we find the option price f at time t = 0?

S0, f

S0d, fd

(1 − p)

S0u, fu
p
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Binomial tree Models

Proposition (Propotion 1.1 in Slide 3)
Let G(St0 , St1 , · · · , Stn) be the payoff of a derivative option at maturity tn.
Assume that there is some (x,φ) such that
G(St0 , St1 , · · · , Stn) = Vx,φ

tn , a.s.then the price of the option should be x.

Remark
If the option is not well priced, there will be arbitrage opportunities for
option buyers or sellers.
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Binomial Tree Models

If q ∈ (0, 1), it defines a probability measure Q (totally unrelated to p)
that, {

Q[St1 = S0u] = Q[ft1 = fu] = q
Q[St1 = S0d] = Q[ft1 = fd] = 1 − q.

Then, we have

f = (1 + r∆t)−1EQ[ft1 ] :=
∑

fi
fi ×Q[ft1 = fi]

Note that we do Not necessarily have

p := P(St1 = S0u) = q.

If this is the case, we call it in the risk neutral world.
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Binomial Tree Models

Remark
we call r is a discrete compound rate if we only compound the
interest on each time periods. For example, starting at t = 0, we
compound the interest at t = ∆t, 2∆t, ... and the interest values
(1 + r∆t)1, (1 + r∆t)2, ...

we call r a continuous compound rate if we continuously compound
the interest on all t ≥ 0. At any t ≥ 0, the interest values ert.
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Binomial Tree Models

Question
Given the current price of the underlying stock, S0 = 20. The stock price
goes up and down by u = 1.2 and d = 0.67,respectively. The one period
risk-free interest rate is 10%.
a) Price a one period European call option with exercise price K = 20.
Consider the discrete compound case.
b) Price a one period European call option with exercise price K = 20.
Consider the continuous compound case.
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